HESI® Math Workbook

HESI® Math Exercises, Tutorials and Multiple Choice Strategies

Published by
Complete TEST Preparation Inc.

Get the Full Version!
https://www.test-preparation.ca/hesi/hesi-math-workbook/
Please note that HESI® is a registered trademark of the Health Education Systems Inc., which was not involved in the production of, and does not endorse, this product.

We strongly recommend that students check with exam providers for up-to-date information regarding test content.

Published by
Complete Test Preparation Inc.
Victoria BC Canada

Visit us on the web at
https://www.test-preparation.ca
Printed in the USA

Version 6.6 August 2016

About Complete Test Preparation

The Complete Test Preparation Team has been publishing high quality study materials since 2005. Over 1 million students visit our websites every year, and thousands of students, teachers and parents all over the world (over 100 countries) have purchased our teaching materials, curriculum, study guides and practice tests.

Complete Test Preparation is committed to providing students with the best study materials and practice tests available on the market. Members of our team combine years of teaching experience, with experienced writers and editors, all with advanced degrees.
Feedback

We welcome your feedback. Email us at feedback@test-preparation.ca with your comments and suggestions. We carefully review all suggestions and often incorporate reader suggestions into upcoming versions. As a Print on Demand Publisher, we update our products frequently.
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Subsections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Getting Started</td>
<td>The HESI® Study Plan</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Making a Study Schedule</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>Estimation</td>
<td>Practice Questions</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Answer Key</td>
<td>21</td>
</tr>
<tr>
<td>23</td>
<td>Graphs and Tables</td>
<td>Practice Questions</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Answer Key</td>
<td>30</td>
</tr>
<tr>
<td>32</td>
<td>Word Problems</td>
<td>How to Solve Word Problems</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Types of Word Problems</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Answer Key</td>
<td>57</td>
</tr>
<tr>
<td>66</td>
<td>Fractions Decimal & Percent</td>
<td>Fraction Tips, Tricks and Shortcuts</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Converting Fractions to Decimals</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Converting Fractions to Percent</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decimal Tips, Tricks and Shortcuts</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Converting Decimals to Fractions</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Converting Decimals to Percent</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent Tips, Tricks and Shortcuts</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Converting Percents to Decimals</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Converting Percents to Fractions</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practice Questions</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Answer Key</td>
<td>84</td>
</tr>
</tbody>
</table>

Get the Full Version!
Algebra
Solving Algebraic Equations 89
Practice Questions 92
Answer Key 95

Metric Conversion
Practice Questions 103
Answer Key 106

Basic Math Multiple Choice

How to Study for a Math Test
How to Prepare for a Test
The Strategy of Studying 120
Reading the Instructions 123

How to Take a Test
How to Take a Test - The Basics 125
In the Test Room 129
Avoid Anxiety Before a Test 135
Common Test-Taking Mistakes 137

Conclusion

Get the Full Version!
https://www.test-preparation.ca/hesi/hesi-math-workbook/
Congratulations! By deciding to take the Health Education Systems Test (HESI®), you have taken the first step toward a great future! Of course, there is no point in taking this important examination unless you intend to do your best to earn the highest grade that you possibly can. That means getting yourself organized and discovering the best approaches, methods and strategies to master the material. Yes, that will require real effort and dedication on your part, but if you are willing to focus your energy and devote the study time necessary, before you know it you will be opening that letter of acceptance to the school of your dreams.

We know that taking on a new endeavor can be scary, and it is easy to feel unsure of where to begin. That’s where we come in. This study guide is designed to help you improve your test-taking skills, show you a few tricks of the trade and increase both your competency and confidence.

Health Education Systems Math Content

The Mathematics section has 30 questions.

- Convert decimals, percent, roman numerals and fractions
- Solve word problems
- Calculate percent and ratio

Get the Full Version!
https://www.test-preparation.ca/hesi/hesi-math-workbook/
• Operations using fractions, percent and fractions
• Determine quantities and/or total cost from information given
• Analyze and interpret tables, graphs and charts
• Convert and estimate metric measurements
• Understand and solve simple algebra problems

The HESI® Study Plan

Now that you have made the decision to take the HESI®, it’s time to get started. Before you do another thing, you will need to figure out a plan of attack. The best study tip is to start early! The longer the time period you devote to regular study practice, the more likely you will retain the material and be able to reach it quickly. If you thought that 1x20 is the same as 2x10, guess what? It really is not, when it comes to study time. Reviewing material for just an hour per day over the course of 20 days is far better than studying for two hours a day for only 10 days. The more often you revisit a particular piece of information, the better you will know it. Not only will your grasp and understanding be better, but your ability to reach into your brain and quickly and efficiently pull out the tidbit you need, will be greatly enhanced as well.

The great Chinese scholar and philosopher Confucius believed that true knowledge could be defined as knowing what you know and what you do not know. The first step in preparing for the HESI® Exam is to assess your strengths and weaknesses. You may already have an idea of what you know and what you do not know, but evaluating yourself for each of the math areas will clarify the details.
Making a Study Schedule

To make your study time the most productive, you will need to develop a study plan. The purpose of the plan is to organize all the bits of pieces of information in such a way that you will not feel overwhelmed. Rome was not built in a day, and learning everything you will need to know to pass the HESI® Exam is going to take time, too. Arranging the material you need to learn into manageable chunks is the best way to go. Each study session should make you feel as though you have accomplished your goal, and your goal is simply to learn what you planned to learn during that particular session. Try to organize the content in such a way that each study session builds on previous ones. That way, you will retain the information, be better able to reach it, and review the previous bits and pieces at the same time.

The Best Study Tip! The best study tip is to start early! The longer you study regularly, the more you will retain and ‘learn’ the material. Studying for 1 hour per day for 20 days is far better than studying for 2 hours for 10 days.

What don’t you know?

The first step is to assess your strengths and weaknesses. You may already have an idea of where your weaknesses are, or you can take our Self-assessment modules for each of the areas, math, English, science and reading.

Below is a table to assess your exam readiness in each content area. You can fill this in now, and correct if necessary after completing the self-assessments, or fill it in after you have taken the self-assessments.
Exam Readiness Assessment

<table>
<thead>
<tr>
<th>Computation and Problem Solving</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic operations with fractions, decimals and percent</td>
<td>1 - 5</td>
</tr>
<tr>
<td>Arithmetic</td>
<td></td>
</tr>
<tr>
<td>Basic operations with positive and negative numbers</td>
<td></td>
</tr>
<tr>
<td>Solve word problems</td>
<td></td>
</tr>
<tr>
<td>Identify equivalent equations and different methods of solving problems</td>
<td></td>
</tr>
<tr>
<td>Basic Algebra</td>
<td></td>
</tr>
<tr>
<td>Solve equations with 1 variable</td>
<td></td>
</tr>
<tr>
<td>Graphic Relationships</td>
<td></td>
</tr>
<tr>
<td>Interpret, and solve problems based on data in graph format</td>
<td></td>
</tr>
<tr>
<td>Solve problems using data from tables</td>
<td></td>
</tr>
<tr>
<td>Metric Conversion</td>
<td></td>
</tr>
<tr>
<td>Convert standard measures to metric</td>
<td></td>
</tr>
</tbody>
</table>
Making a Study Schedule

The key to a study plan is to divide the material you need to learn into manageable size and learn it, while at the same time reviewing the material that you already know.

Using the table above, any scores of 3 or below, you need to spend time learning, going over, and practicing this subject area. A score of 4 means you need to review the material, but you don’t have to spend time re-learning. A score of 5 and you are OK with just an occasional review before the exam.

A score of 0 or 1 means you really need to work on this area and should allocate the most time and the highest priority. Some students prefer a 5-day plan and others a 10-day plan. It also depends on how much time until the exam.

Here is an example of a 5-day plan based on an example from the table above:

- **Fractions, Decimals, Percent:** 1 Study 1 hour everyday – review on last day
- **Estimation:** 3 Study 1 hour for 2 days then ½ hour a day, then review
- **Basic Statistics:** 4 Review every second day
- **Metric Conversion:** 2 Study 1 hour on the first day – then ½ hour everyday
- **Interpret Graphs:** 5 Review for ½ hour every other day
- **Algebra:** 5 Review for ½ hour every other day
- **Word Problems:** 5 very confident – review a few times.

Using this example, here is a sample study plan which you can adapt to your own situation:

Get the Full Version!
https://www.test-preparation.ca/hesi/hesi-math-workbook/
Here are some strategies for estimating answers.

Strategy 1: Break it down

Estimate 105×8

- a. 840
- b. 922
- c. 880
- d. 860

Answer: A
Break 105 into 2 parts: 100 and 5, then multiple both by 8, and add.

100×8 is easy - $100 \times 8 = 800$. And, $5 \times 8 = 40$, adding gives the answer, 840, Choice A

Strategy 2: Use base 10

Estimate 1050×128

- a. 210,000
- b. 200,000
- c. 21,000
- d. 130,000
1050 and 128 are difficult to multiply in your head so take 1000 and 100 - add two zeros to 1000 for the answer, 100,000. Because we rounded down to 1000 and 100, this estimate will be lower than the actual answer.

Looking at the choices, A, B and C can all be eliminated as too small (C) or too large (A and B) so the answer much be D.

Confirming with a calculator, 1050 X 128 = 134,400.
Practice Questions

1. Brad has agreed to buy everyone a Coke. Each drink costs $1.89, and there are 5 friends. Estimate Brad’s cost.
 a. $7
 b. $8
 c. $10
 d. $12

2. What is the best approximate solution for 1.135 - 113.5?
 a. -110
 b. 100
 c. -90
 d. 110

3. Estimate 16 x 230
 a. 31,000
 b. 301,000
 c. 3,100
 d. 3,000,000

4. Estimate 215 x 65
 a. 1,350
 b. 13,500
 c. 103,500
 d. 3,500
Answer Key

1. C
If there are 5 friends, and each drink costs $1.89, we can round up to $2 per drink and estimate the total cost at, 5 X $2 = $10. The actual cost is 5 X $1.89 = $9.45.

2. A
1.135 -113.5 = -112.37. Best approximate = -110

3. C
16 X 230 = 3680
To estimate, break 16 into 10 and 6. 10 * 230 = 2300, and 6 * 230 will be about half that 1380

For an approximation, 2300 + 1150 = 3450. The only choice is choice C, 3100.

4. B
215 X 65 = 13975
Choices A (1,350) and D (3,500) can be eliminated right away as they are too small. Choice C (103,500) is too large and can be eliminated, leaving only choice B.
Answer Sheet

A B C D
1
2
3
4
5
6
7
8
9
10

Get the Full Version!
https://www.test-preparation.ca/hesi/hesi-math-workbook/
Practice Questions

1. Consider the graph above.

How many hospital visits per year does a person aged 85 or more make?

a. 26.2
b. 31.3
c. More than 31.3
d. A decision cannot be made from this graph.

2. Based on this graph, how many visits per year do you expect a person that is 95 or older to make?

a. 31.3 or more
b. Less than 31.3
c. 31.3
d. A decision cannot be made from this graph.
Answer Key

1. A
Based on this graph, a person that is 85 or older will make 26.2 visits to the hospital every year.

2. A
A person aged 95 or older would make 31.3 or more visits.
How to Solve Word Problems

Most students find math word problems difficult. Tackling word problems is much easier if you have a systematic approach which we outline below.

Here is the biggest tip for studying word problems.

Practice regularly and systematically.
Sounds simple and easy right? Yes it is, and yes it really does work.

Word problems are a way of thinking and require you to translate a real world problem into mathematical terms.

Some math instructors go so far as to say that learning how to think mathematically is the main reason for teaching word problems.

So what do we mean by Practice regularly and systematically? Studying word problems and math in general requires a logical and mathematical frame of mind. The only way that you can get this is by practicing regularly, which means everyday.

It is critical that you practice word problems everyday for the 5 days before the exam as a bare minimum.

Get the Full Version!
https://www.test-preparation.ca/hesi/hesi-math-workbook/
If you practice and miss a day, you have lost the mathematical frame of mind and the benefit of your previous practice is pretty much gone. Anyone who has done any number of math tests will agree – you have to practice everyday.

Everything is important. The other critical point about word problems is that all the information given in the problem has some purpose. There is no unnecessary information! Word problems are typically around 50 words in 1 to 3 sentences. If the sometimes complicated relationships are to be explained in that short an explanation, every word has to count. Make sure that you use every piece of information.

Here are 9 simple steps to solve word problems.

Step 1 – Read through the problem at least three times. The first reading should be a quick scan, and the next two readings should be done slowly to answer these important questions:

What does the problem ask? (Usually located towards the end of the problem)

What does the problem imply? (This is usually a point you were asked to remember).

Mark all information, and underline all important words or phrases.

Step 2 – Try to make a pictorial representation of the problem such as a circle and an arrow to show travel.

This makes the problem a bit more real and sensible to you.

A favorite word problem is something like, 1 train leaves Station A traveling at 100 km/hr and another train leaves
the other side. You have to solve the equation so that the unknown ends alone on one side. Where there are multiple unknowns you will need to use elimination or substitution methods to resolve all the equations.

Step 8 – Check your final answers to see if they make sense with the information given in the problem. For example if the word problem involves a discount, the final price should be less or if a product was taxed then the final answer has to cost more.

Step 9 – Cross check your answers by placing the answer or answers in the first equation to replace the unknown or unknowns. If your answer is correct then both side of the equation must equate or equal. If your answer is not correct then you may have derived a wrong equation or solved the equation wrongly. Repeat the necessary steps to correct.

Types of Word Problems

Word problems can be classified into 12 types. Below are examples of each type with a complete solution. Some types of word problems can be solved quickly using multiple choice strategies and some cannot. Always look for ways to estimate the answer and then eliminate choices.
1. Age

A girl is 10 years older than her brother. By next year, she will be twice the age of her brother. What are their ages now?

a. 25, 15
b. 19, 9
c. 21, 11
d. 29, 19

Solution: B

We will assume that the girl’s age is “a” and her brother’s age is “b.” This means that based on the information in the first sentence,

\[a = 10 + b \]

Next year, she will be twice her brother’s age, which gives,

\[a + 1 = 2(b+1) \]

We need to solve for one unknown factor and then use the answer to solve for the other. To do this we substitute the value of “a” from the first equation into the second equation. This gives

\[10+b + 1 = 2b + 2 \]
\[11 + b = 2b + 2 \]
\[11 – 2 = 2b – b \]
\[b = 9 \]

9 = b this means that her brother is 9 years old. Solving for the girl’s age in the first equation gives

\[a = 10 + 9 \]
\[a = 19 \]

the girl is aged 19. So, the girl is aged 19 and the boy is 9
Answer Sheet

1 2 3 4 5 6 7 8 9

21 22 23 24 25
Part 1 - Equation Translation

1. Translate the following into an equation: Five greater than 3 times a number.
 a. $3X + 5$
 b. $5X + 3$
 c. $(5 + 3)X$
 d. $5(3 + X)$

2. Translate the following into an equation: three plus a number times 7 equals 42.
 a. $7(3 + X) = 42$
 b. $3(X + 7) = 42$
 c. $3X + 7 = 42$
 d. $(3 + 7)X = 42$

3. Translate the following into an equation: 2 + a number divided by 7.
 a. $(2 + X)/7$
 b. $(7 + X)/2$
 c. $(2 + 7)/X$
 d. $2/(7 + X)$

4. Translate the following into an equation: six times a number plus five.
 a. $6X + 5$
 b. $6(X+5)$
 c. $5X + 6$
 d. $(6 * 5) + 5$
Answer Key

Part 1 - Equation Translation

1. A
Five greater than 3 times a number.
5 + 3 times a number.
3X + 5

2. A
Three plus a number times 7 equals 42.
Let X be the number.
(3 + X) times 7 = 42
7(3 + X) = 42

3. A
2 + a number divided by 7.
(2 + X) divided by 7.
(2 + X)/7

4. B
Six times a number plus five is the same as saying six times (a number plus five). Or,
6 * (a number plus five). Let X be the number so, 6(X+5).
Fractions, Decimals and Percent

Fraction Tips, Tricks and Shortcuts

When you are writing an exam, time is precious, and anything you can do to answer faster is a real advantage. Here are some ideas, shortcuts, tips and tricks that can speed up answering fractions problems.

Remember that a fraction is just a number which names a portion of something. For instance, instead of having a whole pie, a fraction says you have a part of a pie--such as a half of one or a fourth of one.

Two digits make up a fraction. The digit on top is known as the numerator. The digit on the bottom is known as the denominator. To remember which is which, just remember that “denominator” and “down” both start with a “d.” And the “downstairs” number is the denominator. So for instance, in \(\frac{1}{2} \), the numerator is the 1 and the denominator (or “downstairs”) number is the 2.

- It’s easy to add two fractions if they have the same denominator. Just

Get the Full Version!
https://www.test-preparation.ca/hesi/hesi-math-workbook/
add the digits on top, and leave the bottom one the same: $1/10 + 6/10 = 7/10$.

- It’s the same with subtracting fractions with the same denominator: $7/10 - 6/10 = 1/10$.

- Adding and subtracting fractions with different denominators is more complicated. First, you have to get the problem so that they do have the same denominators. The easiest way to do this is to multiply the denominators: For $2/5 + 1/2$ multiply 5 by 2. Now you have a denominator of 10. But now, you have to change the top numbers too. Since you multiplied the 5 in $2/5$ by 2, you also multiply the 2 by 2, to get 4. So the first number is now $4/10$. Since you multiplied the second number times 5, you also multiply its top number by 5, to get a final fraction of $5/10$. Now you can add 5 and 4 together to get a final sum of $9/10$.

- Sometimes you’ll be asked to reduce a fraction to its simplest form. This means getting it to where the only common factor of the numerator and denominator is 1. Think of it this way: Numerators and denominators are brothers that must be treated the same. If you do something to one, you must do it to the other, or it’s just not fair. For instance, if you divide your numerator by 2, then you should also divide the denominator by the same. Let’s take an example: The fraction $2/10$. This is not reduced to its simplest terms because there is a number that will divide evenly into both: the number 2. We want to make it so that the only number that will divide evenly into both is 1. What can we divide into 2 to get 1? The number 2, of course! Now to be “fair,” we have to do the same thing to the denominator: Divide 2 into 10 and you get 5. So our new, reduced fraction is $1/5$.

Get the Full Version!
https://www.test-preparation.ca/hesi/hesi-math-workbook/
Answer Sheet

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Practice Questions

1. $\frac{2}{3} + \frac{5}{12} =$
 a. $\frac{9}{17}$
 b. $\frac{3}{11}$
 c. $\frac{7}{12}$
 d. $1 \frac{1}{12}$

2. $\frac{3}{5} + \frac{7}{10} =$
 a. $1 \frac{1}{10}$
 b. $\frac{7}{10}$
 c. $1 \frac{3}{10}$
 d. $1 \frac{1}{12}$

3. $\frac{4}{5} - \frac{2}{3} =$
 a. $\frac{2}{2}$
 b. $\frac{2}{13}$
 c. 1
 d. $\frac{2}{15}$

4. $\frac{13}{16} - \frac{1}{4} =$
 a. 1
 b. $\frac{12}{12}$
 c. $\frac{9}{16}$
 d. $\frac{7}{16}$
Answer Key

1. D
A common denominator is needed, which both 3 and 12 will divide into. So, \(8 + \frac{5}{12} = \frac{13}{12} = 1 \frac{1}{12} \)

2. C
A common denominator is needed for 5 and 10.
\(6 + \frac{7}{10} = \frac{13}{10} = 1 \frac{3}{10} \)

3. D
A common denominator is needed for 5 and 3.
\(12 - \frac{10}{15} = \frac{2}{15} \)

4. C
A common denominator is needed for 16 and 4.
\(13 - \frac{4}{16} = \frac{9}{16} \)
Algebra

Solving Algebraic Equations

Linear equations with variable \(x \) is an equation with the following form:

\[
ax = b
\]

where \(a \) and \(b \) are some real numbers. If \(a = 0 \) and \(b \neq 0 \), then the equation has no solution.

Here is an example of a simple linear equation with one variable:

\[
4x - 2 = 2x + 6
\]

To solve, move variables to the one side, and real numbers to the other side of the equals sign. Always remember: if you are changing sides, you are changing signs. Move all variables to the left, and real numbers to the right:

\[
4x - 2 = 2x + 6
\]
Basic Algebra

\[4x - 2x = 6 + 2 \]

\[2x = 8 \]

\[x = \frac{8}{2} \]

\[x = 4 \]

Here is more complex linear equation:

\[\frac{2x - 6}{4} + 4 = x \]

Multiple the whole equation by 4 to cancel out the denominator.

\[2x - 6 + 16 = 4x \]

Move whole numbers to one side, and variables top the other, changing sides when crossing the equals sign.

\[2x - 4x = -16 + 6 \]

\[-2x = -10 \]

\[x = \frac{-10}{-2} \]

\[x = 5 \]
Answer Sheet

A B C D

1 2 3 4 5 6 7 8 9
1. Solve the equation $3(x + 2) - 2(1 - x) = 4x + 5$
 a. -1
 b. 0
 c. 1
 d. 2

2. Solve $-x - 7 = -3x - 9$
 a. -1
 b. 0
 c. 1
 d. 2

3. Solve for x, when $5x + 21 = 66$.
 a. 19
 b. 9
 c. 15
 d. 5

4. Solve for n, when $5n + (19 - 2) = 67$.
 a. 21
 b. 10
 c. 15
 d. 7

5. $5x + 2(x + 7) = 14x - 7$. Find x
 a. 1
 b. 2
 c. 3
 d. 4
Answer Key

1. C
To solve the linear equation, operate the knowns and unknowns within each other and try to obtain x term (which is the unknown) alone on one side of the equation:

3(x + 2) - 2(1 - x) = 4x + 5 … We remove the parenthesis by distributing the factors:
3x + 6 - 2 + 2x = 4x + 5
5x + 4 = 4x + 5
5x - 4x = 5 - 4
x = 1

2. A
Collect similar terms on the same side. Here, we can collect x terms on left side, and the constants on the right:

-x - 7 = -3x - 9 …. Let us add 3x to both sides:

-x - 7 + 3x = -3x - 9 + 3x

2x - 7 = -9 … Now, we can add + 7 to both sides:

2x - 7 + 7 = -9 + 7

2x = -2 … Dividing both sides by 2 gives us the value of x:

x = -2/2
x = -1

3. B
5b + 21 = 66
5b = 66 - 21 = 45
5b = 45
b = 45/5 = 9
4. B
5n + (19 – 2) = 67
5n + 17 = 67
5n = 67 - 17
5n = 50
n = 50/5 = 10

5. C
To solve for x, first simplify the equation
5x + 2x + 14 = 14x – 7

7x - 14x = -14 -7

-7x = -21
x = -21/-7
x = 3
Conversion between metric and standard units can be tricky since the units of distance, volume, area and temperature can seem arbitrary when compared. Although the metric system (using SI units) is the standard system of measure in most parts of the world many countries still use at least some of their traditional units of measure. In North America those units come from the old British system.

When measuring distance the relation between metric and standard units looks like this:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.039 in</td>
<td>1 millimeter</td>
</tr>
<tr>
<td>3.28 ft</td>
<td>1 meter</td>
</tr>
<tr>
<td>0.621 mi</td>
<td>1 kilometer</td>
</tr>
<tr>
<td>1 inch</td>
<td>1 foot</td>
</tr>
<tr>
<td>25.4 mm</td>
<td>.305 m</td>
</tr>
<tr>
<td>1 mile</td>
<td>1.61 km</td>
</tr>
</tbody>
</table>

Here, you can see that 1 millimeter is equal to .039 inches and 1 inch equals 25.4 millimeters.

When measuring area the relation between metric and standard looks like this:
Answer Sheet

A B C D
1
2
3
4
5
6
7
8
9

Get the Full Version!
https://www.test-preparation.ca/hesi/hesi-math-workbook/
1. Convert 10 kg. to grams.
 10,000 grams
 1,000 grams
 100 grams
 10.11 grams

2. 1 gallon = ________ liter(s).
 a. 1 liter
 b. 3.785 liters
 c. 37.85 liters
 d. 4.5 liters

3. Convert 2.5 liters to milliliters.
 a. 1,050 ml.
 b. 2,500 ml.
 c. 2,050 ml.
 d. 1,500 ml.

4. Convert 210 mg. to grams.
 a. 0.21 mg.
 b. 2.1 g.
 c. 0.21 g.
 d. 2.12 g.

5. Convert 10 pounds to kilograms.
 a. 4.54 kg.
 b. 11.25 kg.
 c. 15 kg.
 d. 10.25 kg.
Answer Key

1. A
 1kg = 1,000 g and 10 kg = 10 × 1,000 = 10,000 g

2. B
 1 US gallon = 3.78541178 liters

3. B
 1 liter = 1,000 milliliters, 2.5 liters = 2.5 × 1,000 = 2,500 milliliters

4. C
 1,000 mg = 1 g, 210 mg = 210/1000 = 0.21 g. Be careful of Choice A, (0.21 mg.) The numbers are the same but the units are different.

5. A
 1 pound = 0.45 kg, 10 pounds = 4.53592, or about 4.54 kg. When multiplying a decimal by 10, move the decimal point one place to the left.
Math is the one section where you need to make sure that you understand the processes before you ever tackle it. That’s because the time allowed on the math portion is typically so short that there’s not much room for error. You have to be fast and accurate. It’s imperative that before the test day arrives, you’ve learned all the main formulas that will be used, and then to create your own problems (and solve them).

On the actual test day, use the “Plug-Check-Check” strategy. Here’s how it goes.

Read the problem, but not the answers. You’ll want to work the problem first and come up with your own answers. If you did the work right, you should find your answer among the options given.

If you need help with the problem, plug actual numbers into the variables given. You’ll find it easier to work with numbers than it is to work with letters. For instance, if the question asks, “If Y-4 is 2 more than Z, then Y+5 is how much more than Z?” try selecting a value for Y. Let’s take 6. Your question now becomes, “If 6-4 is 2 more than Z, then 6 plus 5 is how much more than Z?” Now your answer should be easier to work with.

Check the answer choices to see if your answer matches one of those. If so, select it. If no answer matches the one you got, re-check your math, but this time, use a different method. In math, it’s common for there to be more than one way to solve a problem.
Every subject has its own particular study method. Math is mostly numerical, rather than verbal, and requires logical thinking; it has its own way to be studied. Before touching on significant points of studying a math test, let’s look at some of the fundamentals of “learning.”

Learning is not an instant experience; it is a procedure. Learning is a process not an event. Rome wasn’t built in a day, and learning anything (or everything) isn’t going to happen in a day either. You cannot expect to learn everything in one day, at night, before the test. It is important and necessary to learn day-by-day. Good time management plays a considerable role in learning. When you manage your time, and begin test preparation well in advance, you will notice the subjects are easier than you thought, or feared, and you will take the test without the stress of a sleepless body and an anxious mind.

Memorizing is a temporary step of learning if information is not comprehended and applied afterwards. Memorize just the basics and understand the meaning; then apply, analyze, synthesize and evaluate.

These are the hierarchical layout of cognitive learning: Of course, there are some basic properties that you need to memorize in the beginning, since you cannot prove the facts every time you solve a math test. For example; the inner angles of a triangle sum up to 180°. If you do not know this, you may not be able to solve triangle problems. And, more
Most students hide their heads and procrastinate when faced with preparing for an exam, hoping that somehow they will be spared the agony, especially if it is a big one that their futures rely on. Avoiding a test is what many students do best and unfortunately, they suffer the consequences because of their lack of preparation.

Test preparation requires strategy and dedication. It is the perfect training ground for a professional life. Besides having several reliable strategies, successful students also have a clear goal and know how to accomplish it. These tried and true concepts have worked well and will make your test preparation easier.

The Study Approach

Take responsibility for your own test preparation.

It is a common - but big - mistake to link your studying to someone else’s. Study partners are great, but only if they are reliable. It is your job to be prepared for the test, even if a study partner fails you. Do not allow others to distract you from your goals.

Prioritize the time available to study

When do you learn best, early in the day or at night? Does your mind absorb and retain information most efficiently in small blocks of time, or do you require long stretches to get the most done? It is important to figure out the
Everyone knows that taking an exam is stressful, but it does not have to be that bad! There are a few simple things that you can do to increase your score on any type of test. Take a look at these tips and consider how you can incorporate them into your study time.

OK - so you are in the test room - Here is what to do!

Reading the Instructions

This is the most basic point, but one that, surprisingly, many students ignore and it costs big time! Since reading the instructions is one of the most common, and 100% preventable mistakes, we have a whole section just on reading instructions.

Pay close attention to the sample questions. Almost all standardized tests offer sample questions, paired with their correct solutions. Go through these to make sure that you understand what they mean and how they arrived at the correct answer. Do not be afraid to ask the test supervisor for help with a sample that confuses you, or instructions that you are unsure of.

Tips for Reading the Question

We could write pages and pages of tips just on reading the test questions. Here are a few that will help you the most.

• **Think first.** Before you look at the
Visit Us Online
Taking a test? We can help!

Complete study guides, practice questions, tutorials, study tips and more:

www.test-preparation.ca

https://www.facebook.com/CompleteTestPreparation/

https://www.youtube.com/user/MrTestPreparation

https://www.instagram.com/completetestpreparation/

https://www.pinterest.ca/brians6634/boards/
Online Resources

How to Prepare for a Test - The Ultimate Guide

Learning Styles - The Complete Guide
https://www.test-preparation.ca/learning-styles/

Test Anxiety Secrets!
https://www.test-preparation.ca/how-to-overcome-test-anxiety/

Time Management on a Test

Flash Cards - The Complete Guide

Test Preparation Video Series

How to Memorize - The Complete Guide